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The effect of rotation on the flow around an obstacle in a Hele Shaw cell is considered. 
For the flow outside the strip-shaped boundary layer near the obstacle, it is shown that 
the rotating and non-rotating cases are related by a simple transformation. The flow 
in the boundary layer near the obstacle is computed numerically and its relation to the 
Stewartson Ef and EQ layers is briefly discussed. 

1. Introduction 
Flows in Hele Shaw cells, i.e. flows of viscous fluids between two large and closely 

spaced parallel plates, are described in almost every text-book on elementary fluid 
mechanics. If the flow between the plates is locally blocked by an obstacle whose 
length scales in the directions parallel to the plates are significantly larger than the 
distance between the plates, it  was shown both experimentally and theoretically by 
Hele Shaw (1898) that, apart from thin strip-shaped boundary layers near the edges 
of the plates and the obstacle, the streamlines are parallel to the plates and have the 
same geometry as those of a two-dimensional potential flow. The variation of the 
velocity field in the direction perpendicular to the plates is, to a high degree of accuracy, 
locally the same as that of a plane Poiseuille flow. The case when the plates are rotating 
around an axis, which is not parallel to the plates, was studied by Goldin (1957) for 
source-sink flows. Goldin showed that the local plane Poiseuille flow in the non- 
rotating case is in the rotating case replaced by two merging non-divergent Ekman 
layers. If the distance between the plates is large, the Ekman layers will, of course, be 
separated by a geostrophic flow. 

In  the present note, the modification of the flow between rotating plates caused by an 
obstacle between the plates is considered. It is shown that, although the structure of 
the boundary layer near the obstacle becomes considerably more complicated than in 
the non-rotating case, there is a simple transformation between the non-rotating and 
rotating cases for the flow outside the boundary layer. The boundary-layer problem 
considered in this work is a simpler version of the boundary-layer problem solved by 
Hashimoto & Matsuda (1979) for the motion of an ideal viscous gas in the neighbour- 
hood of the edge of a rapidly rotating cylinder, whose axial dimension is much smaller 
than its radial dimension. 

It may be of some interest to note that flows of the kind considered in the present 
work appear in some technological applications. One important case is the flow between 
the disks in the very densely packed disk stacks in centrifugal separators for separation 
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FIQURE 1. Sketoh of the geometrical configuration and definition of co-ordinate systems. 

of fluid emulsions or suspensions. Such disk stacks do significantly increase the effici- 
ency of centrifugal separators (Sokolov 1971). Another application is the friction pump, 
where the radial transport of fluid between two rotating plates is driven by friction and 
centrifugal forces. In  both the aforementioned applications, there are usually caulks 
(or similar devices) between the plates and the effect of these on the flow is of some 
interest. 

The paper is disposed as follows. Section 2 contains the mathematical formulation 
of the problem and the solution for the flow outside the boundary layer. Some numerical 
solutions of the boundary-layer problem, obtained by a Galerkin method, are given in 
§ 3. 

2. The flow outside the boundary layer 
Consider two infinitely large parallel plates, which are rotating around a common 

axis with the angular velocity Q. The axis of rotation is, for simplicity, assumed to be 
perpendicular to the plates. A Cartesian co-ordinate system (x:, x:, xf), where 
asterisks denote dimensional co-ordinates, will be used. The co-ordinate system is 
rotating with the plates. The x; direction is taken to be parallel to the axis of rotation, 
see figure 1. The distance between the plates is 26L, where 6 is a dimensionless quantity 
and L is a characteristic length, which is specified below. The origin of the co-ordinate 
system is chosen such that the plates are a t  x$ = & SL. Between the plates there is a 
body B (see figure l ) ,  which is bounded by the plates at  xt = f 6L and by the cylindri- 
cal surface g(x:/L,xz/L) = 0. The latter equation defines the length scale L. The 
surface g = 0 will in what follows be called b. 

The space between the plates outside B contains a Newtonian fluid, whose density p 
and kinematic viscosity v are assumed to be constants. The motion of the fluid 
relative to the plates is assumed to be driven by prescribed sources and sinks and/or a 
prescribed steady pressure field at  large distances from B. The order of magnitude of 
the velocity of the fluid relative to the plates is given by a characteristic velocity U. 

The flow is suitably characterized by the following non-dimensional variables : 

U 
Rossbynumber, Ro = -; LQ 

V 
Ekmannumber, E = -- LW’ 
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82 
Taylornumber, T = - E' 

The Rossby number is assumed to be sufficiently small for linear theory to be valid. 
The Ekman number is also assumed to be small whereas the Taylor number is assumed 
to be of order unity, i.e. S = O(E4). Non-dimensional variables are defined as 

X* 
L' 

x=- 

U* u = (U,V,W) = - 
Ro U (velocity), 

** (pressure). 
= RopULQ 

The linearized equations for u and p are 

2 k x u =  - V * - E V x V x u ,  V . U = O ,  (2.11, (2.2) 

where k = ( O , O ,  1). Equations (2.1)-(2.2) are to be solved subject to the following 
boundary conditions 

u = 0 for xl, z2 outside B, x3 = & 6; (2.3~) 

u = o for g = 0, 1z31 ~ 6 .  (2.3b) 

The boundary conditions at large distances from B and in the neighbourhood of 
eventual singularities need not be specified at present. Because S = O(Et),  it is natural 
to use a stretched variable Q which is defined as 

and assume that the solution of (2.1)-(2.2) possesses an expansion of the form 

where y = (xl, x2). In terms of the complex variable z = x1 + ix2, it follows from (2.1)- 
(2.2), (2.3~) and (2.4) that 

w, = w1 = 0, 
an 

O -  dz 
uo-iv - -Oh(Y), 

where II, is an analytic function of z. A solution of the form (2.5) was given by Goldin 
(1957) for source flows. When T is small, i.e. when the Coriolis force is weak compared 
with the viscous forces, equation (2.5) reduces, of course, to the classical solution given 
by Hele Shaw (1 898). The remaining part of the problem is to  determine the boundary 
condition for the function l-I, on the curve g(x,, x2) = 0. The solution (2.5) cannot 
satisfy (2.3b) unless no = constant, which means that there is no flow anywhere. There 
+ll thus be a boundary layer on b and the boundary condition for II, is determined by 
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considering both (2.5) and the appropriate boundary-layer solution. If R = 0, one 
finds after some simple calculations the following boundary condition 

u,.e, = 0 on b, e, = &- Vg (2.6a, b)  

as was postulated on heuristic grounds by Hele Shaw (1898). If R + 0, (2.6a, b) give 

(2.6~) 

Because @[h] + 4[h] $: 0 forl[l < Ti, except possibly a t  isolated points, (2.6~) means 
that both the normal and the tangential derivatives of po are zero on b, i.e. no is a 
constant. Equation (2.6~) is therefore obviously incorrect in the rotating case. (This 
awkwardness does not arise in the non-rotating case where 9[h]  = 0.) In order to 
determine the boundary condition for no on g = 0, there is thus a need to examine the 
boundary layer on b in some detail. 

To describe the boundary layer, a local Cartesian co-ordinate system on b will be 
used (see figure 1). Expressed in the original co-ordinate system, the origin of the local 
co-ordinate system is a t  xo = (xl(s), xz(s) ,  0), where s is the arc length along the curve 
g(x,(s), x2(s))  = 0. In  the local co-ordinate system, an additional stretched variable E is 
defined as 

IVg I 

{en ' VPO) 9[h(6)1+ {(k x en) * VPO) 9"6)1 = 0 on b- 

where the sign in (2.6b) is chosen such thate, points outwards from B. 
The correction velocity field in the boundary layer is written as 

G = &e,++(kxe,)+dk, (2.8) 

Q and the correction pressure field @ are assumed to possess expansions of the form 

Equations (2.1)-(2.2), (2.7) and (2.9) give the following lowest-order boundary-layer 
equations 

(2.10~) 

(2.10b, c) 

(2.10d,e) 

(2.1 1 e) 
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FIGURE 2. Flow around a flat plate of negligible thickness. The vertically averaged flow is at 
large die:ancea perpendicular to the plate. T = 26, 5 = 4.75. 

where uo(8, C) is the solution of (2.1)-(2.2) expressed in the original co-ordinate system 
and evaluated on b. If averages in the k direction are denoted by angle brackets one 
finds from (2.10e), (2.l la) and (2.11e) that 

(2.12) 

Equations (2.12) and(2.11b) thengive 

(uo .em) = 0 on b (2.13) 

which is the boundary condition sought. Some solutions of (2.10b-e) are given in the 
next section. 

Equation (2.13) means that the average in the k direction of the velocity field has 
the same geometry as if the flow is not rotating. If the complex potential W for the 
vertically averaged flow in the non-rotating case, which is defined by 

dW 
dz ' (uo) - i(vo) = - (2.14) 

is known for a given geometry of B and for a given distribution of singularities, say, 
one finds from (2.5) and (2.13)-(3.14) that the function no for the corresponding 
rotating case is given by /( tanh(1 -i)T*) no= 2iw 1- 

(1 --i)T* - (2.15) 
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FIQURE 3. Source flow in the neighbourhood of a circular cylinder. T = 25, 5 = 4.75. 

The dependence of the angle 4 between the direction of the vertically averaged flow 
and the direction of the pressure gradient on the Taylor number T can be readily 
calculated from (2.14)-(2.15) whereby one finds the familiar limits 

lim 4 = 0, lim 4 =in. 
T+O T - m  

It can be shown that the effect of rotation on the geometry of the streamlines (compared 
to the non-rotating case) outside the boundary layer is largest when T is large and 
k Tf- 5 = O( l),  i.e. in the Ekman layers when these are distinct. 

Two examples are shown in figures 2 and 3. Figure 2 shows the case when B is a flat 
plate of negligible thickness. It should be noted that one streamline goes into the 
boundary layer at the left edge and leaves the boundary layer at the right edge. The 
fluid particles on a streamline entering the boundary layer on one side of the plate are, 
of course, not the same as those on the same streamline leaving the boundary layer at  
the other side of the plate. The fluid particles are displaced in the k direction in the 
boundary layer. Figure 3 shows the flow from a source near a cylinder. Although the 
vertically averaged flow in the neighbourhood of the source is a potential source flow 
in the usual sense, the flow for each value of 5 is a potential source-vortex flow (cf. 
Goldin 1967). 
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3. The boundary-layer flow 

then gives the following equation for 8, 
It follows from ( 2 . 1 0 ~ )  and (2.11e) that $o iszero. Eliminationof$,from (2.1Ob-e) 

which, with a difFerent scaling of the co-ordinates, was studied by Stewartson (1957). 
In the present notation, Stewartson studied cases where 6 = O(l),  i.e. T = O(E-l), 
and, by using asymptotic techniques for large values of T ,  discovered the set of boun- 
dary layers, which are known in the literature as the Stewartson E f  and E* layers. 

Following Stewartson (1957), a solution of (3.1) having the form 
-3 

8, = I]I CKe-.6coshvK(w)[, B[w] > 0 
K = l  

is assumed. The quantities vK(w) are determined from (3.1). The homogeneous boun- 
dary conditions (2.11a) give three relations between the quantities CK(w) and do thus 
define an eigenvalue problem for w .  There are three sequences w,, one where w, is real 
and two where w, is complex, one sequence being the complex conjugate of the other. 
The asymptotic properties of the eigenvalues have been studied in some detail by 
Sundstrom & Bark (1980), who derived the following approximate relations 

(i) n 9 T2, T arbitrary 

2T2+ 1 

( 3 . 3 4  

(3.3b) 

(3 .44  

[ W n l  + i  l n 3 8 , - 3 ) + 0 [ (  12 )1], (3.4b) 

where r, = ( n + i ) n ,  8, = 

(iii) n Q Ti ,T  1 
19 1343 

w o = T - f  I+-+- ( 48114 768011 

12 2 1, (3 .5b)  
19 1 

( 3 . 5 4  
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where u = (4T4-4, t ,  = nn. 

Noting that the boundary-layer variable in (3 .2)  is stretched by the factor Ei ,  see 
(2 .7) ,  one recovers, for T = O(E-l),  the well-known Stewartson Ei- and Ei-layer solu- 
tions from (3 .2)  and the lowest-order parts of (3 .5a)  and (3.5b, c ) ,  respectively. These 
expressions are thus higher-order extensions with respect to E of Stewartson's (1957) 
results and may be useful for calculation of Stewartson layers in cases where E is not 
exceedingly small. 

Apart from the factor T-k, which appears due to the scaling of the problem, the 
eigenvalues given by (3.3a, b) are, to lowest order, independent of T. This means that 
the eigenfunctions (a,,, a,,, Go,) corresponding to these eigenvalues describe motions, 
which are mainly governed by pressure and viscous forces and are only weakly affected 
by the Coriolis force. These eigenvalues do therefore have counterparts in similar 
boundary-layer problems where the Coriolis force is absent. The lowest-order part of 
( 3 . 3 ~ )  is the same as that obtained from the almost trivial boundary-layer problem for 
the case when the plates are not rotating. In  this case 8, + 0 and 42, = 0, = 0. The 
eigenvalues given by (3 .3b)  are the same as those appearing in certain problems 
involving the biharmonic equation? (see e.g. formulae (4.2)-(4.3) in Joseph & Sturges 
(1978)).  For the geometry shown in figure 1, a problem of this kind would appear if, 
for example, the plates are not rotating and the flow is driven by a prescribed mass 
flux through the surface b, this mass flux being perpendicular to b and symmetric with 
respect to a$. In  this case one would have 8, = 0, 42, =+ 0 and 8, =+ 0. 

The authors were unable to construct a useful (from the computational point of 
view) orthogonality relation for the eigenfunctions Q,, . This inconvenience arises 
frequently in similar problems governed by the biharmonic equation (see, for example, 
Spence 1977; Joseph &, Sturges 1978). In  the present work, a Galerkin method was 
used, i.e. the integral 

evaluated at 5 = 0, was minimized with respect to the coefficients c, in the series 

([a, + u, . (k x e,)I2 + [a, + u,. e,I2 + 8;) (3.6) 

N 3 .. 

8, = C, 2 C,,e-un~cosh~,,~. 
n = O  K = l  

(3.7) 

For N = 62, the boundary conditions for the values of T in the examples in figures 4 
and 5 are fulfilled with a relative error of order which was judged as satisfactory. 
This calculation, as well as an accurate calculation of the eigenvalues, was carried out 
numerically on a computer. 

Figures 4 and 5 show level curves for the swirl velocity and streamlines for the 
meridional flow for three different values of the Taylor number.$ The effect of rotation 

t E.g. Stokes flow in trenches, deformation of elmtic strips. 

$ The flow outside the boundary layer is in these graphs nornialized such that It dlT,/dzl = 1, 
cf. (2.5). 
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FIQURE 4. Level curves for the swirl velocity field, lgl d Ti, 0 < 6 < 8Tk 
(a) T = 1, w = 0-0735(j-l), j = 1 ,..., 11; 

( b )  T = 25, w = 0*102(j-l), j = 1 ,..., 11; 

(c) T = 100, w = 0*102(j-1), j = l , . . . , l l .  

is rather weak for the smallest value T = 1. The strength of the meridional flow is in 
this case only a few per cent of the swirl velocity. As in the non-rotating case, the 
horizontal extent of the vertical boundary layer is of the same order of magnitude as the 
distance between the plates. For the largest value of the Taylor number (T = 100)) 
the flow outside the vertical boundary layer is characterized by two rather distinct 
Ekman layers separated by a thick region of geostrophic flow, where the velocity is 
essentially constant. Due to the gyroscopic constraint imposed on the flow by the 
relatively strong rotation in this case, the vertical boundary layer has in this case a 
thickness, which is significantly smaller than the distance between the plates (but 
larger than the thickness of the Ekman layers). The vertical boundary layer shown in 
figures 4 ( c )  and 5 ( c )  may be characterized as a short Stewartson E* layer. The eddies 
associated with the thinner Stewartson E* layer are weak in this case and can therefore 
not be men on these graphs. 

The same boundary-layer problem as the one considered in this work but for a 
rapidly rotating gas haa been considered by Hashimoto & Matsuda (1979). These 
authors calculated the eigenvaluesnumerically for T = 4 and used a collocation method 
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FIGURE 5. Streamlines for the meridional flow, [[I < T i ,  0 < 6 < 8T4. 
(a) T = 1, @ = +0.00139(j-1), j = 1 ,..., 6. 
( b )  T = 25, 

( c )  T = 100, 
@ = 0*0586(j- l), 
+ = *0*0771(j- l), 

j = 1 ,..., 6. 
j = 1 ,..., 6. 

to fulfil the boundary conditions. Another similar problem has been considered by 
Jeyapalan & Bennet (1980), who showed that a solution of the form (3.7) agrees 
better with the experimental data by Baker (1967) for a free shear layer in a rotating 
fluid than does the usual Stewartson Ei-layer solution. 

The authors are grateful to Mr P. S. Meijer for valuable comments and to Dr T. 
Byquist for the preparation of figures 1-3. 
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